1 Trend Filtering
نویسندگان
چکیده
The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick–Prescott (H-P) filtering, a widely used method for trend estimation. The proposed !1 trend filtering method substitutes a sum of absolute values (i.e., !1 norm) for the sum of squares used in H-P filtering to penalize variations in the estimated trend. The !1 trend filtering method produces trend estimates that are piecewise linear, and therefore it is well suited to analyzing time series with an underlying piecewise linear trend. The kinks, knots, or changes in slope of the estimated trend can be interpreted as abrupt changes or events in the underlying dynamics of the time series. Using specialized interior-point methods, !1 trend filtering can be carried out with not much more effort than H-P filtering; in particular, the number of arithmetic operations required grows linearly with the number of data points. We describe the method and some of its basic properties and give some illustrative examples. We show how the method is related to !1 regularization-based methods in sparse signal recovery and feature selection, and we list some extensions of the basic method.
منابع مشابه
Additive Models with Trend Filtering
We consider additive models built with trend filtering, i.e., additive models whose components are each regularized by the (discrete) total variation of their (k+1)st (discrete) derivative, for a chosen integer k ≥ 0. This results in kth degree piecewise polynomial components, (e.g., k = 0 gives piecewise constant components, k = 1 gives piecewise linear, k = 2 gives piecewise quadratic, etc.)....
متن کاملTrend Filtering: Empirical Mode Decompositions versus ℓ1 and Hodrick-Prescott
Considering the problem of extracting a trend from a time series, we propose a novel approach based on empirical mode decomposition (EMD), called EMD trend filtering. The rationale is that EMD is a completely data-driven technique, which offers the possibility of estimating a trend of arbitrary shape as a sum of low-frequency intrinsic mode functions produced by the EMD. Based on an empirical a...
متن کاملl1 Trend Filtering
The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed l1 trend filtering method substitutes a sum of absolute values (i.e., an l1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated ...
متن کاملAdaptive Piecewise Polynomial Estimation via Trend Filtering
We study trend filtering, a recently proposed tool of Kim et al. (2009) for nonparametric regression. The trend filtering estimate is defined as the minimizer of a penalized least squares criterion, in which the penalty term sums the absolute kth order discrete derivatives over the input points. Perhaps not surprisingly, trend filtering estimates appear to have the structure of kth degree splin...
متن کاملFast and Flexible ADMM Algorithms for Trend Filtering
This paper presents a fast and robust algorithm for trend filtering, a recently developed nonparametric regression tool. It has been shown that, for estimating functions whose derivatives are of bounded variation, trend filtering achieves the minimax optimal error rate, while other popular methods like smoothing splines and kernels do not. Standing in the way of a more widespread practical adop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 51 شماره
صفحات -
تاریخ انتشار 2009